

June 1993 Revised March 1999

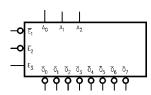
74LVX138

Low Voltage 1-of-8 Decoder/Demultiplexer

General Description

The LVX138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three LVX138 devices or a 1-of-32 decoder using four LVX138 devices and one inverter.

Features

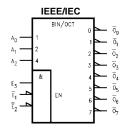

- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

Order Number	Package Number	Package Description
74LVX138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVX138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX138MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols



Connection Diagram

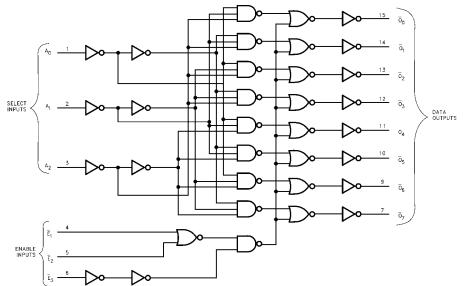
Pin Descriptions

Pin Names	Description				
A ₀ -A ₂	Address Inputs				
$\overline{E}_1 - \overline{E}_2$	Enable Inputs				
E ₃	Enable Input				
\overline{O}_0 – \overline{O}_7	Outputs				

Functional Description

The LVX138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A₀, A₁, A₂) and, when enabled, provides eight mutually exclusive active-LOW outputs $(\overline{O}_0 - \overline{O}_7)$. The LVX138 features three Enable inputs, two active-LOW (\overline{E}_1 , \overline{E}_2) and one active-HIGH (E_3).

All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3


The LVX138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active-LOW state.

Truth Table

Inputs									Out	puts			
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	O ₀	$\overline{O_0}$ $\overline{O_1}$ $\overline{O_2}$ $\overline{O_3}$ $\overline{O_4}$ $\overline{O_5}$ $\overline{O_6}$						
Н	Х	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Χ	Н	Х	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Х	Х	L	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

- H = HIGH Voltage Level
- L = LOW Voltage Level X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

 $-40^{\circ}C$ to $+85^{\circ}C$

0 ns/V to 100 ns/V

Absolute Maximum Ratings(Note 1)

Conditions (Note 2)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

-20 mA -0.5V to 7V

Supply Voltage (V_{CC}) 2.0V to 3.6V 0V to 5.5V Input Voltage (V_I) Output Voltage (V_O) $\rm OV$ to $\rm V_{CC}$

the safety of the device cannot be guaranteed. The device should not be

operated at these limits. The parametric values defined in the Electrical

The "Recommended Operating Conditions" table will define the conditions

Recommended Operating

DC Output Diode Current (I_{OK})

Operating Temperature (T_A) -20 mA Input Rise and Fall Time (Δt/ΔV)

 $V_0 = -0.5V$ $V_O = V_{CC} + 0.5V$

DC Input Voltage (V_I)

+20 mA

DC Output Voltage (V_O)

 $-0.5 \mbox{V to V}_{CC} + 0.5 \mbox{V}$ Note 1: The "Absolute Maximum Ratings" are those values beyond which

DC Output Source or Sink Current (I_O)

 $V_{I} = -0.5V$

 $\pm 25~\text{mA}$ Characteristics tables are not guaranteed at the absolute maximum ratings.

DC V_{CC} or Ground Current (I_{CC} or I_{GND}) Storage Temperature (T_{STG})

Power Dissipation

±75 mA for actual device operation. $-65^{\circ}C$ to $+150^{\circ}C$ Note 2: Unused inputs must be held HIGH or LOW. They may not float.

180 mW

DC Electrical Characteristics

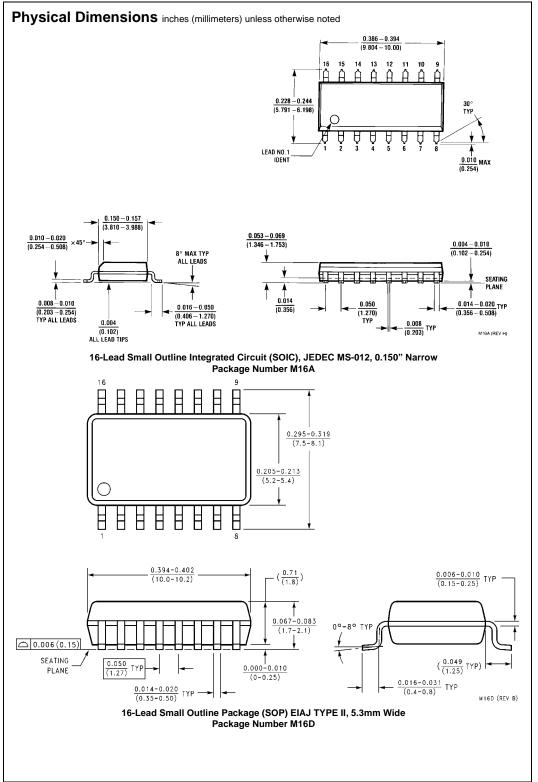
Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$;	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cymbol	i di dilictoi	•66	Min Typ I		Max	Min Max		Onno	Conditions		
V _{IH}	HIGH Level	2.0	1.5			1.5					
	Input Voltage	3.0	2.0			2.0		V			
		3.6	2.4			2.4					
V _{IL}	LOW Level	2.0			0.5		0.5				
	Input Voltage	3.0			0.8		0.8	V			
		3.6			0.8		0.8				
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL} \text{ or } V_{IH} I_{OH} = -50 \mu\text{A}$		
	Output Voltage	3.0	2.9	3.0		2.9		V	$I_{OH} = -50 \mu\text{A}$ $I_{OH} = -4 \text{mA}$		
		3.0	2.58			2.48			$I_{OH} = -4 \text{ mA}$		
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL} \text{ or } V_{IH} I_{OL} = 50 \mu\text{A}$		
	Output Voltage	3.0		0.0	0.1		0.1	V	$I_{OL} = 50 \mu A$		
		3.0			0.36		0.44		$I_{OL} = 4 \text{ mA}$		
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μΑ	V _{IN} = V _{CC} or GND		

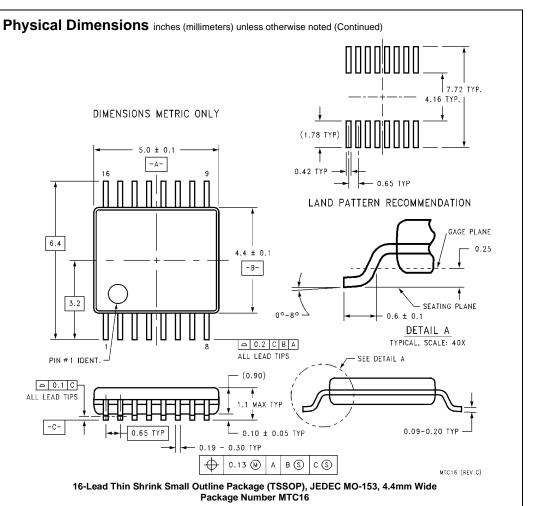
Noise Characteristics (Note 3)

Symbol	Parameter		T _A =	25°C	Units	C _L (pF)	
			Тур	Limit			
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.3	0.5	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.3	-0.5	V	50	
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage			2.0	V	50	
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

Note 3: Input $t_r = t_f = 3 \text{ ns}$

AC Electrical Characteristics


Symbol	Parameter	V _{cc}		T _A = +25°C	;	T _A = -40°	C to +85°C	Units	CL (pF)
Symbol		(V)	Min	Тур	Max	Min	Max		CE (pr)
t _{PLH}	Propagation	2.7		7.1	13.8	1.0	16.5		15
t _{PHL}	Delay Time			9.6	17.3	1.0	20.0	ns	50
	A_n to \overline{O}_n	3.3 ± 0.3		5.5	8.8	1.0	10.5	115	15
				8.0	12.3	1.0	14.0		50
t _{PLH}	Propagation	2.7		8.8	16.0	1.0	18.5		15
t _{PHL}	Delay Time			11.3	19.5	1.0	22.0		50
	\overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.3 ± 0.3		6.9	10.4	1.0	11.5	ns	15
				9.4	13.9	1.0	15.0		50
t _{PLH}	Propagation	2.7		8.7	16.3	1.0	19.5		15
t _{PHL}	Delay Time			11.2	19.8	1.0	23.0	ns	50
	E_3 to \overline{O}_n	3.3 ± 0.3		6.8	10.6	1.0	12.5	115	15
				9.3	14.1	1.0	16.0		50
t _{OSHL}	Output to Output	2.7			1.5		1.5	ns	50
toslh	Skew (Note 4)	3.3			1.5		1.5	115	


Note 4: Parameter guaranteed by design. t_{OSLH} = |t_{PLHm}-t_{PLHn}|, t_{OSHL} = |t_{PHLm}-t_{PHLn}|

Capacitance

Symbol	Parameter		T _A = +25°C		$T_A = -40^{\circ}$	Units	
	T didiliotoi	Min	Тур	Max	Min	Max	Onico
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 5)		34				pF

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $C_{PD} \times V_{CC} \times I_{IN} + I_{CC}$

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com